A General Strategy for Absolute Stereochemical Control in Enone–Olefin [2 + 2] Photocycloaddition Reactions

Chuanfeng Chen, Virginia Chang, Xiaolu Cai, Eileen Duesler, and Patrick S. Mariano*

Department of Chemistry, University of New Mexico Albuquerque, New Mexico 87131 Received April 5, 2001

Intramolecular enone-olefin [2 + 2] photocycloaddition reactions have been widely used in organic synthesis as principle steps in routes for the preparation of structurally complex targets.¹ Among the advantageous features of these processes is that (1) elaborate polycyclic structures can be constructed under mild conditions, and (2) ring strain in the cyclobutyl-ketone photoproducts can be used to drive desired secondary fragmentation and rearrangement reactions. Despite extensive employment of this excited-state reaction in synthesis, wider applications are limited by two important factors. First, since the [2 + 2]photocycloadditions proceed via the intermediacy of triplet 1,4biradicals² they occur with randomization of stereochemistry.³ Second, universally applicable methods to control facial selectivities in these processes have not been developed. Although some highly creative approaches to solve the latter problem have been described⁴ (e.g., the masterful use of solid-state photochemistry by Schultz and co-workers),⁵ low levels of enantioselectivity are typically observed.

Observations made in our early studies of iminium salt photochemistry⁶ have led us to formulate a potentially general strategy to solve both of these stereochemical problems. The concept is based on the use of eniminium salts **2** as surrogates for enones **1** (Scheme 1). Since the eniminium salts possess only $\pi-\pi^*$ excited states, intersystem crossing from singlet to triplet excited states is expected to be slow. As a result, [2 + 2] photocycloaddition reactions of these substrates (**2**–**3**) should occur from singlet excited states^{6a} and, as a result, they could follow concerted mechanistic pathways. Results from our preliminary studies⁷ of eniminium salt photochemistry validate this proposal. Specifically, intramolecular [2 + 2] photocycloadditions of the alkene-tethered salts **4** (Scheme 2) are efficient singlet excited-state processes that deliver tricyclic products **5** with a preference for retention of alkene stereochemistry.

Another key feature of this strategy is the control of [2 + 2] photocycloaddition facial selectivity by amine based, chiral

Crimmins, M. T. Chem. Rev. 1988, 88, 1453; Winkler, J. D.; Bowen,
 C. M.; Liotta, F. Chem. Rev. 1995, 95, 2003; Crimmins, M. T.; Reinhold, T.
 L. Organic Reactions: Wiley: New York, 1993; Vol. 44, p 297.

C. M.; Lloua, P. Chem. Rev. 1995, 95, 2005; Chimmins, M. 1.; Reinfold, T.
 L. Organic Reactions; Wiley: New York, 1993; Vol. 44, p 297.
 (2) Hastings, D. J.; Weedon, A. C. J. Am. Chem. Soc. 1991, 113, 8525;
 Maradyn, D. J.; Weedon, A. C. J. Am. Chem. Soc. 1995, 117, 5359; Wilsey,
 S.; Gonzalez, L.; Robb, M. A.; Houk, K. N. J. Am. Chem. Soc. 2000, 122, 5866 and references therein.

(3) Becker, D.; Nagler, M.; Sahali, Y.; Haddad, N. J. Org. Chem. **1991**, 56, 4537; Becker, D.; Denekamp, C.; Haddad, N. Tetrahedron Lett. **1992**, 33, 827.

(4) (a) Bach, T. Synthesis 1998, 683; Demuth, M.; Mikhail, G. Synthesis
1989, 145 and references therein; Bach, T.; Bergman, H. J. Am. Chem. Soc.
2000, 122, 11525: Bach, T.; Bergman, H.; Harms, K. Angew. Chem., Int. Ed. 2000, 39, 2302. (b) For a novel approach to enantiospecific [2 + 2] photocycloadditions using chiral allenes, see: Shepard, M. S.; Carreira, E. M. J. Am. Chem. Soc. 1997, 119, 2598. (c) For an approach to enantioselective thermal dipolar- and [2 + 4] cycloadditions via transient imminium ions, see: Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874; Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc.

(5) Schultz, A. G.; Taveras, A. G.; Taylor, R. E.; Tham, F. S.; Kullnig, R. K. J. Am. Chem. Soc. 1992, 114, 8725.

(6) (a) Stavinoha, J. L.; Mariano, P. S. J. Am. Chem. Soc. 1981, 103, 3136,
(b) Mariano, P. S. Acc. Chem. Res. 1983, 16, 130. (c) Mariano, P. S. Tetrahedron 1983, 39, 3845.

(7) Cai, X.; Chang, V.; Chen, C.; Kim, H. J.; Mariano, P. S. *Tetrahedron Lett.* **2000**, *41*, 9445.

Scheme 1

Scheme 2

Table 1. Calculated (Macromodel) Energies of GloballyMinimized Transition States for Intramolecular [2 + 2]Photocycloadditions of C2-Chiral Eniminium Salt

variables			chergy (kJ/III01)		
R	Х	n	anti-TS	syn-TS	difference
Me CH ₂ OMe Ph Ph	0 0 0 CH ₂	2 2 2 1	169 94 163 138	180 107 180 154	11 13 17 16

^{*a*} Molecular mechanics calculations using Macromodel (MM3), parametrized [2 + 2] cycloaddition transition-state distances and angles, and the Monte Carlo method with 500 conformers sampled in each case.

auxiliaries. In transition states for concerted cycloadditions of the eniminium salts, properly designed N-linked chiral auxiliaries (e.g. those derived from C₂-chiral amines) could reside close to the sites of C–C bond formation. Consequently, face selectivities in [2 + 2] photocycloadditions of these substrates could be large. This proposal gains qualitative support from the results of molecular mechanics calculations (Macromodel, MM3, global energy minimization) performed on transition states for intramolecular [2 + 2] cycloadditions of C₂-chiral pyrrolidine-derived, β -substituted cyclic eniminium cations (Table 1). The calculations indicate that the 2,5-substituents in the N-heterocyclic moieties of these salts can induce large energy differences between the transition states for addition anti and syn to the near R-groups (R_N).

A demonstration of the feasibility of this eniminium salt-based strategy to control the absolute stereochemistry of enone-olefin photocycloadditions has come from investigations with the alkenetethered, C₂-chiral pyrrolidino-cyclohexeniminium perchlorates **8–10** (Scheme 3). These substrates are prepared by AgClO₄-promoted O-alkylations of the enamino-ketones **7** with 1-pentenyl bromide. The enaminones originate by condensation of 1,3-cyclohexandione with the known, enantiomerically pure *trans*-

Scheme 3

Table 2. Facial Selectivities (% ee) in Intramolecular [2 + 2]Photocycloadditions of the C₂-Chiral Eniminium Perchlorates **8** and **9**

eniminium perchlorate	conversion (%) ^c	temperature (°C)	yield (%)	% ee ^b tricyclic ketone 13
8	90	20	51	63
8	56	20	65	75
8	40	20	61	82
8	60	4	60	78
8	46	4	56	80
9	53	20	20	37
9	51	20	25	31
9	48	20	31	37

^{*a*} All photoreactions were run in MeCN by using Corex glass-filtered light. ^{*b*} From the % de of the ester derivative, formed by reaction of alcohol **12** with (R)(-)-Mosher acid chloride, by using HPLC on a Chiralcel-OJ column with 9:1 hexane–'PrOH as eluant. ^{*c*} Determined by UV-spectroscopic monitoring of the photolyzate.

2,5-disubstituted-pyrrolidines.⁸ Like the parent eniminium salt 4,⁷ 8 is transformed to the tricyclic ketone 13 by irradiation ($\lambda > \lambda$ 250 nm) in MeCN followed by aqueous Na₂CO₃ workup. The degree of facial selectivity attending this process is assessed by determining the % de of the Mosher ester derivatives 11 of the alcohol 12, produced by NaBH₄ reduction of 13. The four stereoisomers of 11, obtained by treatment of racemic 12 with (R)- and (S)-Mosher acid chlorides, can be separated by HPLC on a Chiralcel-OJ column using 9:1 hexane-ⁱPrOH as eluant. The enantiomer ratio in photoproduct 13 is best determined by using HPLC analysis of the ester derived by treatment of 12 with (R)(-)-Mosher acid chloride. The data (Table 2) show that intramolecular photocycloaddition of the bis-methoxymethylsubstituted pyrrolidino-eniminium salt 8 proceeds with moderately high facial selectivity especially for reactions in which conversion of **8** is maintained in the 40-60% range.

Preparative HPLC provides a crystalline sample of the minor ester **11a**, formed by a sequence of reactions involving irradiation of eniminium salt **8**, reduction of ketone **13**, and reaction of alcohol **12** with (R)(-)-Mosher acid chloride. X-ray crystallographic analysis (Figure 1) of this substance shows that it has the $(1R,3S,4S,8R,\alpha-S)$ -absolute stereochemistry. Thus, the major enantiomer of **13** formed by irradiation of **8** has the (1S,3S,8S)-stereochemistry.

The direction but not magnitude of facial selectivity in the intramolecular photocycloaddition reaction of 2,5-dimethylpyr-

Figure 1. Chem-3D plot of the X-ray crystallographic data obtained for 11a.

rolidino-eniminium perchlorate **9** matches that observed for **8** (Table 2). The lower % ee observed in this case parallels the transition-state modeling results (Table 1) and indicates the need for sterically bulky pyrrolidine 2,5-substituents to maximize facial selectivity. Unfortunately, the diphenyl derivative **10**, although predicted (Table 1) to display the highest % ee in the intramolecular cycloaddition process, is not transformed to the tricyclic ketone **13** by irradiation in MeCN. The photostability of this substance might be due to internal quenching of the eniminium singlet excited state by SET from the pendant phenyl donor groups.⁹

Although not yet extensive, the investigation chronicled above demonstrates the efficacy of a C₂-chiral eniminium salt-based strategy for controlling absolute stereochemistry in intramolecular enone–olefin [2 + 2] photocycloaddition reactions. Studies probing applications of this methodology to photoreactions of eniminium salts bearing various types and positioned alkenetethers as well as those of alkene linked β -enaminoketones are continuing.

Acknowledgment. We dedicate this publication to the memory of Arthur G. Schultz, a generous and thoughtful person who, through elegantly designed and carefully executed studies, made major contributions to the area of synthetic organic photochemistry. Financial support for this study was provided by a Grant from the National Institutes of Health (GM-27251).

Supporting Information Available: (1) ¹H- and ¹³C NMR spectra for all previously unreported compounds including enamino-ketones 7 ($R = CH_2OMe$, Me, Ph), eniminium salts 8–10, the Mosher ester derivatives 11a and 11b, and alcohol 12, and (2) X-ray crystallographic data for 11a. This material is available free of charge via the Internet at http://pubs.acs.org.

JA010883+

^{(8) (}a) (2*R*,5*R*)-2,5-Dimethoxymethylpyrrolidine, commercial and Sasaki, N. A.; Sagnard, I. *Tetrahedron* **1994**, *50*, 7093. (b) (2*S*,5*S*)-2,5-dimethylpyrrolidine, Ymazaki, T.; Gimi, R.; Welch, J. T. *Synlett* **1991**, 573. (c) (2*R*,5*R*)-2,5-diphenylpyrrolidine, Chong, J. M.; Clarke, I. S.; Koch, I.; Olbach, P. C.; Taylor, N. *Tetrahedron Asymmetry* **1995**. *6*, 409.

<sup>Taylor, N. Tetrahedron Asymmetry 1995, 6, 409.
(9) Borg, R. M.; Heuckeroth, R. O.; Lan, A. J. Y.; Quillen, S. L.; Mariano, P. S. J. Am. Chem. Soc. 1987, 109, 2728; Lan, A. J. Y.; Heuckeroth, R. O.; Mariano, P. S. J. Am. Chem. Soc. 1987, 109, 2738.</sup>